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Abstract

Natural language models often fall short when
understanding and generating mathematical
notation. What is not clear is whether these
shortcomings are due to fundamental limita-
tions of the models, or the absence of appropri-
ate tasks. In this paper, we explore the extent
to which natural language models can learn
semantics between mathematical notation and
their surrounding text. We propose two nota-
tion prediction tasks, and train a model that
selectively masks notation tokens and encodes
left and/or right sentences as context. Com-
pared to baseline models trained by masked
language modeling, our method achieved sig-
nificantly better performance at the two tasks,
showing that this approach is a good first step
towards modeling mathematical texts. How-
ever, the current models rarely predict unseen
symbols correctly, and token-level predictions
are more accurate than symbol-level predic-
tions, indicating more work is needed to rep-
resent structural patterns. Based on the re-
sults, we suggest future works toward model-
ing mathematical texts.

1 Introduction

With the enormous growth of academic publishing,
there is increasing interest in the area of scholarly
document analysis in NLP (Chandrasekaran et al.,
2020; Beltagy et al., 2019). Many academic papers
use mathematical notation, both in formulas and
in describing components of algorithms, as seen
in ‘α is the learning rate’, and ‘240× 240 pixel
image’. However, despite the great advances in
pretrained language models such as BERT (Devlin
et al., 2019), they are still unable to analyze mathe-
matical notation reliably (Andor et al., 2019). Sim-
ilarly, in our experiments (§4.3), pretrained models
show very poor performance (9%), when compared
with the traditional N-gram based models (19%).

∗Work carried out at Seoul National University
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This empirical result tells us that BERT’s pretrain-
ing method barely incorporates the modeling of
mathematical notation. Although we find that fine-
tuning through masked language modeling on aca-
demic text increases the model performance (by
48%), the accuracy is still low for an application.

We cast the problem of mathematical notation
semantics as one of predicting the right notation
given the context – notation prediction has the ad-
vantage of simplicity. Motivated by an academic
paper authoring application (Head et al., 2020), we
propose two new target tasks that can make use of
mathematical notation prediction: notation auto-
suggestions and notation consistency checks.

Notation auto-suggestions: Some symbols are
used conventionally in a given domain. For in-
stance, the symbol α is used conventionally in deep
learning papers as learning rate. A tool for suggest-
ing notation could learn about conventions from
usages across many papers, and make suggestions
for appropriate notation given its context.

Notation consistency checks: When writing
technical papers, authors develop the ideas during
the process of writing. This can lead to inconsis-
tency in notation. For instance, a concept might
be referred to as D to mean delta in Equation 1
in the paper, and then later the authors may use
D to mean document in Equation 3. A notation
verification tool could check the consistency of no-
tation usage across the paper and warn the author
when the different uses of the symbol might be in
conflict.

In addition to the tasks, we propose an approach
to fine-tuning BERT language models to represent
mathematical notation with a level of accuracy that
begins to approach that needed for these kinds
of real-world applications. As shown below, our
method achieves top-1 token-level accuracy of 61%
and 74% for notation auto-suggestion and notation
consistency checks, respectively.1

1The codes and dataset are available at



Our contributions can be summarized as follows:
• We propose two notation prediction tasks to

test models’ mathematical semantics under-
standing.

• We then present a fine-tuned model MATH-
PREDICTOR for the tasks, showing +12%,
+16% performance gain compared to BERT
for the two tasks, respectively.

• We show analyses of the results that suggest
that the performance does not largely depend
on the global context. We also report evidence
that our method can learn common notation
usage patterns.

2 Related Work

The use of mathematical notation in texts.
Mathematical notation is integral to academic dis-
course. The symbols in a single academic paper
often number in the hundreds (West and Portenoy,
2016; Greiner-Petter et al., 2020). A single in-
stance of notation can be simple, as in the case of a
single-letter symbol, or complex, as in an equation
composed of dozens of symbols.

In a given text, the prose and notation are closely
related and inter-referential. Studies of reading be-
havior reveal readers diverting their focus from no-
tation to text and vice versa (Zanibbi and Blostein,
2012; Kristianto et al., 2014; Kohlhase et al., 2018).
Definitions of notation appear close to the notation
itself; Wolska and Grigore (2010) estimated that
as many of 70% of symbols are defined in the same
paragraph that the symbol is introduced. This close
relationship between prose and notation suggests
that language models may be able to select notation
to suit the context it appears in.

Modeling mathematical notation. Neural net-
works have been used widely to predict textual to-
kens from their context, with simple models such as
word2vec (Mikolov et al., 2013) and high-capacity
transformers (Devlin et al., 2019). However, could
similar techniques be used to predict mathemati-
cal notation given the textual context it appears in?
Recent research has explored this possibility in var-
ious tasks such as type inference in mathematical
statements (Rabe et al., 2020) by using Transformer
architecture (Vaswani et al., 2017), topic-sensitive
equation generation (Yasunaga and Lafferty, 2019),
superscript disambiguation (Youssef and Miller,
2018) with recurrent neural networks, and mathe-
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matical information retrieval (Greiner-Petter et al.,
2020) using word2vec algorithms. These results
show that the recent advanced models could be
used for modeling notation.

A complementary line of research takes nota-
tion as input, and attempts to predict text to de-
scribe the notation. In recent work, Abekawa and
Aizawa (2016) retrieved a relevant paragraph to
a given query, Kang et al. (2020) and Alexeeva
et al. (2020) extracted symbol descriptions from
text, and Madisetty et al. (2020) detected symbol
descriptions in math equations. In contrast to prior
work, our model takes text as input and predicts
appropriate mathematical notation.

Text-based representations of notation. Our
method also differs from prior work on model-
ing mathematical notation in the granularity of its
textual predictions: the model predicts tokens of
equations in LaTeX representation. In this way,
our method simultaneously supports the predic-
tion of simple symbols comprising single tokens
(e.g., “x”); composite ones made up of multiple
tokens (“xi”), and symbols with accents (x̄) and
styles (“x”), given that symbol relationships, styles,
and accents are all declared explicitly in LaTeX.

This paper chooses text-based representations of
notation due to the simplicity of the approach; such
representations requires minimal changes to exist-
ing successful natural language models like BERT,
allowing attention to be devoted to the development
and evaluation of an appropriate task.

Contemporaneously with our work, Peng et al.
(2021) proposed a method for pre-training a model
to predict mathematical equations by encoding tree
structures of equations as well as their surrounding
text. By contrast, we apply a fine-tuning approach
since we hypothesized that the power of pre-trained
BERT on language understanding will be important
for modeling notation. Furthermore, while Peng
et al. (2021) focused on predicting mathematical
equations, our work predicts not only mathematical
equations but also mathematical notation such as
numbers, latex macros, letters, symbols, and math
operators, making it more appropriate for academic
authoring applications.

3 Proposed Method: MATHPREDICTOR

We design a method to learn the meaning of math
notation grounded in the surrounding text. This re-
quires good representations of standard text, math-
ematical notations, and their combination. To

http://github.com/HwiyeolJo/MathPredictor


Types Examples #-Uniq
Letter n, m, SHA, model, loss, x .. 16K

Number 218, 00, 4k, 2K, 90., 2cm .. 234

OP&Symbol α , θ , ≤, ×, arccos, %, ∃ .. 271

LaTeX Macros \top, \text, \mathcal \quad,
\bf, \rm, \underline, \em ..

562

Table 1: Examples of notation tokens. We report the
unique number of notation tokens in the training data.
#-Uniq means the unique number of notation tokens.

achieve this, we use a pre-trained language model
BERT (Devlin et al., 2019) for the standard text
representation and fine-tune it only on notation.

Our model takes raw LaTeX files as input, which
have some markedly different characteristics than
general natural language text input. In this sec-
tion we define the notations that our system recog-
nizes (§3.1), and how it is tokenized (§3.2). Then
we describe our model MATHPREDICTOR and its
training and inference procedure (§3.3).

3.1 Notation Type Definition

We call every occurrence of tokens between $ signs
in the raw LaTeX files mathematical notation to-
kens. Notation tokens consist of one or more letters,
numbers, math operators and/or symbols (includ-
ing Greek letters), and LaTeX’s default macros.
Table 1 shows some example of notation tokens for
these four categories, along with their unique num-
ber in the training set (the dataset will be described
in §4.1). The algorithm for tokenizing into these
categories assumes tokens are separated by blank
space, and works as follows:

Numbers: these must begin with a digit fol-
lowed by any number of digits commas, and peri-
ods, and ending with digits or English letters before
the next blank space. This allows for covering large
integers and decimal numbers and numbers with
measurement (e.g., cm).

LaTeX macros: if the token starts with \(back-
slash), the following letters up until blank space
are grouped into a LaTeX macro, with several man-
ually determined exceptional cases such as greek
letters (α (\alpha)) to be grouped as math sym-
bols instead.

Letter notations: The letter notations begin
with English characters, and all following char-
acters up to a blank space.

What remains are considered as math opera-
tors and symbols. We did extra checking on the

... the ray  with ...hText

LaTeX the ray $\overline h$ with

Tokens ⋯ ⋯the ray $ \overline h with$

B

C

A

⋯ ⋯

Figure 1: Illustration of the tokenization process. Af-
ter updating the vocabulary with the expanded LaTeX
macros, individual LaTeX expressions can be success-
fully tokenized.

final groups manually. The details on the manual
process are described in Appendix A.

3.2 Tokenization

We tokenize raw LaTeX using BERT’s default
WordPiece tokenizer (Wu et al., 2016). How-
ever, we observe that BERT’s tokenizer splits La-
TeX macros like \mathbf or symbols \alpha
into incorrect sub-words. For example, the macro
\overline is split to multiple sub-tokens \, over,
and ##line by the original BERT’s tokenizer. To
address this problem, we extract entire macro vo-
cabularies from training data by using regular ex-
pressions (future work can make use of a LaTeX
parser). After adding the extracted macros, the
original BERT’s vocabulary size increases from
28,996 to 31,647. Figure 1 illustrates the output
after tokenization.

The final tokens are then fed to a model follow-
ing BERT’s standard encoding scheme: adding the
special token [CLS] at the beginning of sentence
and [SEP] at the end. After the [SEP] token, we add
[PAD] tokens to match the maximum token length.
[MASK] tokens are used for masking target tokens
to predict the target sentence, which will be further
described in the next section. After adding the spe-
cial tokens, we truncate the input text to 512, which
is the maximum token length of original BERT.

3.3 Training and Inference

Our model MATHPREDICTOR is fine-tuned from
the pre-trained language model BERT to predict
the masked tokens of math notation in academic
papers. Figure 2 illustrates how MATHPREDICTOR

works at training and inference. We mask only
individual tokens of the mathematical notation, not
any non-notation words. We hypothesize that this
targeted training allows the model to learn a better
relationship between text and math notation than
standard BERT; this is verified in our empirical
evaluation (§4.4).

The goal of this method is to correctly predict



(a) Training (b) Inference

Figure 2: The illustration of the proposed method. It encodes context (left and/or right sentences) and the target
sentence where each token of notation in the target sentence is masked ([MASK]). At training, we permute the input
sequences (dotted boxes) with random probability p in order to learn the structure of notation and then train BERT
by using these representations of the sentences. As a result, the training instances are subset of the permutations.
At inference time, the masked token is predicted with likelihood scores.

the masked tokens (‘h’, ‘p’, ‘\overline’) in the
target sentence by looking at surrounding text in
the target sentence as well as the context sentences.
The context sentences can be either sentences to the
left of the target sentence for the auto-suggestion
task or sentences to both the left and right of the
target sentence for the consistency checking task.
During training time, we optimize cross-entropy
over notations only. At testing time, the model
outputs the top-k candidates for each notation token
using maximum likelihood and calculates mean
reciprocal rank scores (Voorhees, 1999).

Permutation over notation tokens. The model
should learn the connections between notation to-
kens. For instance, a LaTeX macro \overline
should be followed by letters or symbols (e.g., h)
in order to build a fully correct symbol (h). Thus,
inspired from Rabe et al. (2020) we add additional
training instances that partially mask the notation
with random probability p. As a default, each token
is masked with the probability of 0.9. This tech-
nique helps the model learn mathematical notation
via the other surrounding notations and augments
the number of training examples.

Model choice. Our model predicts math notation
in the target sentence in a non-autoregressive man-
ner of BERT (Devlin et al., 2019). This means that
all of the notations in a given context are predicted
at once rather than sequentially. An alternative ap-
proach is to use autoregressive language modeling
such as GPT2 (Radford et al., 2019). However, this
takes too much time to decode each token and is

also less suitable for our scenario of writing assis-
tant applications, since authors rarely write com-
plex research papers in a strictly sequential order.

Notation length constraint. In some cases, sen-
tences have very long sequences of mathematical
notation, as seen in this example: “Let the data
source be $ Y \text { \in } \lbrace Y _ 1 , \dots , Y
_ m \rbrace $.” In this case, the model needs to pre-
dict a total of 18 notation tokens between $ signs,
which is quite difficult. Thus, we restrict the maxi-
mum number of masked tokens (i.e., notations) in
a sentence to be less than 10 to alleviate the level
of task difficulty. For reference, we present the
performances as the length constraint changes in
Appendix B.

Larger context modeling. A research paper typ-
ically spans many pages. Sometimes, notation can
be defined early in the paper and then re-used later
in many sentences, paragraphs, or even sections
away.

Therefore, we test the hypothesis that the fine-
tuned model needs to understand not only sentences
immediately surrounding the occurrence of mathe-
matical notation, but relevant sentences at any posi-
tions in the paper. We refer to this as global context,
and to the surrounding context before and/or after
the target sentence as local context.

Our training is based on the pre-trained BERT
model, which cannot encode the context longer
than its maximum token length which is 512.
To remedy this, recently researchers have devel-
oped long-encoder BERT such as the longformer



model (Beltagy et al., 2020), but its inference time
is too slow to be used as a practical feature for
real-time writing assistant.

Instead, we extend the fine-tuned model to en-
code global context by simply averaging sentence
representations in the global and local context to-
gether. Specifically, we first encode each sentence
into a vector and get vS1 · · ·vSN , where the sentence
representation is made by [CLS] token of the last
hidden layers. Then, we concatenate sentence vec-
tors in the global and local context by averaging:
for example, assume that the model is designed to
encode 7 previous sentences Sn−7, · · · ,Sn−1 from
the target sentence Sn as the local context. For the
global context, we average the previous vectors
from the local context and then concatenate the av-
eraged vector to the input token embedding. That
is, we averaged the [CLS] vectors of S1, · · · ,Sn−8
and concatenate it with the vectors of local con-
text, which is Sn−7, · · · ,Sn−1 and then predict the
notation in the target sentence Sn. By doing so, the
model can use all the previous sentences.

Likewise, in notation consistency checks with
left 3 and right 3 context sentences, in addi-
tion to the averaged vector of the previous sen-
tences, the other next sentences out of local
context are averaged and concatenated to the
last of the input token embeddings. As a re-
sult, the input will be avg([CLS]S1 · · ·[CLS]Sn−4)
Sn−3 · · ·Sn · · ·Sn+3 avg([CLS]Sn+4 · · ·[CLS]SN ). We
call these method as full context model.

4 Experiments and Evaluation

This section evaluates how well our model per-
forms at mathematical notation prediction com-
pared to several strong baselines. We first describe
the evaluation dataset (§4.1), the baseline models
(§4.2), and the notation prediction tasks (§4.3). We
then investigate the following research questions:
R1 (§4.4): How well does our model predict when
compared to the baselines for the two prediction
tasks?
R2 (§4.5): Does the model simply memorize
notations in context or does it learn domain-
conventional patterns from other papers?
R3 (§4.6): Which types of notations is the model
most able to predict?
R4 (§4.7): How well does the model perform when
evaluated at the sentence level?
R5 (§4.8): How well does the model perform at the
document-level (qualitatively)?

4.1 Dataset

For our experiments, we use the S2ORC (Lo et al.,
2020) dataset which contains 12.7 million full text
of research papers; many of these papers contain
mathematical notations written in LaTeX format.

From S2ORC, we randomly sub-sample 1,000
papers as our experimental dataset. This dataset
size is similar to the previous works (Aizawa et al.,
2014; Abekawa and Aizawa, 2016) and is necessary
due to computational constraints.

We identify sentence boundaries with NLTK’s
sentence tokenizer and tokenize words with
BERT’s WordPiece tokenizer (Wu et al., 2016).
The resulting dataset has on average 223.2 sen-
tences per document and 20.3 tokens per sentence.

We split the data into train, validation, and test
set with the ratios of 80%, 10%, and 10%. To
prevent the split data from being biased, we tested
baseline models such as random prediction and n-
gram models on the data split, and then selected
the split that showed average performance. After
pre-processing the test set, there are 14K tokens to
be predicted, which is 3.05 tokens per symbol and
4.84 tokens per sentence. On average there are 1.59
mathematical notations included in a sentence.

Academic papers contain some frequent non-
text entities that are not relevant to the mathemat-
ical notation task, and so we replace these with
placeholder terms. These include converting ci-
tations (e.g., Author et al.) to CITATION, section
references (e.g., §4) to SECTION, long equations to
EQUATION, tables to TABLE, and figures to FIGURE.
This preprocessing step reduces unknown vocabu-
laries, mitigating noise that might prevent encoders
from understanding the text.

4.2 Baseline Models

As described in §3.3, we choose bert-base-
cased (Devlin et al., 2019) as a base encoder for
MATHPREDICTOR. Note that we use the cased ver-
sion because in our tasks upper-cased (e.g., N) and
lower-cased (e.g., n) notations can have distinct
mathematical meanings.

In addition to the pre-trained baselines, we also
build strong baselines by fine-tuning the original
pre-trained baselines on our dataset using the stan-
dard masked language model training on both no-
tation and text. Other BERT variations such as
SciBERT (Beltagy et al., 2019) fine-tuned on sci-
entific papers and RoBERTa (Liu et al., 2019) are
also used as baseline models. Additionally, stan-



Suggestion Consistency
Top1 Top5 MRR Top1 Top5 MRR

Random 3.3 14.1 - 3.6 15.1 -
4-gram 18.8 28.5 - - - -

BERT 9.0 18.8 .146 13.8 28.3 .215
BERT(FT) 48.3 66.1 .568 57.8 75.4 .658
SciBERT 15.19 26.2 .207 16.6 26.6 .216
SciBERT(FT) 48.8 68.8 .579 58.6 76.7 .669
RoBERTa 0.5 1.5 .011 1.7 3.6 .029
RoBERTa(FT) 21.9 33.1 .277 32.8 45.8 .393

MathPred 57.4 65.4 .613 71.7 77.7 .746
MathPred(FT) 60.5 71.3 .657 73.5 80.0 .767

w/ FullContext 55.7 68.7 .620 72.2 79.8 .758

Table 2: Performance comparison on notation auto-
suggestion and consistency checking tasks. FT means
fine-tuning the model through masked language mod-
eling on notations and words using our dataset. w/
FullContext means using full global context with
MATHPREDICTOR.

dard baselines such as random selection and n-gram
based models are also presented.

We set the hyperparameters to the defaults by
Huggingface’s training scripts (Wolf et al., 2020),
with the exception of setting a learning rate of
5e− 6 and early-stopping using validation loss.
Additional details for baseline training, hyper-
parameter settings, and computing resources can
be found in Appendix C.

4.3 Tasks

Notation auto-suggestions. To simulate the
auto-suggestion task, this evaluation attempts to
automatically suggest notation by using the text
of the target sentence as well as sentences to the
left of the target sentence. Every masked token is
predicted from among the vocabulary of the tok-
enizer, and the top-k tokens are chosen as the final
candidates. Note that the evaluation in §4.4 reports
token-level top-k accuracy with mean reciprocal
rank (MRR) scores and we report notation-level
and sentence-level accuracies in §4.7.

Notation consistency checks. The consistency
checking task verifies whether notations are used
consistently within a paper. To simulate it, we eval-
uate the use of notation in the target sentence with
respect to the context it is found in. Therefore, the
context used for consistency checking is given as
sentences to the left and right of the target sentence.

Then, we design a prediction task that chooses
the gold notation among candidate choices. The
negative notations are produced by replacing each

E
a
s
y · · · We use a ring dimension n = 8192 with two plain

text moduli t( j). Each coefficient modulus n = 8192 is
decomposed into four 64-bit moduli for efficient use of
FV-RNS.

C
h
a
l
l
e
n
g
e · · · In scoring boardgames like Scrabble, swing, a state

transition of advantage during the game progress is con-
sidered as successful shoot, and game length as attempt
respectively. Let S and N be the average number of
swings and the game length, respectively.

Table 3: Examples of the easy set and the challenge
set. The easy set has the target notations in the con-
text sentences whereas the challenge set does not. The
underlined sentences are used as context and the blue-
colored symbols with gray backgrounds are the target.
These examples are from the auto-suggestion task.

Suggestion Consistency
Easy Chal. Easy Chal.

BERT 9.99 0.26 15.09 0.12
BERT(FT) 52.32 3.38 59.27 3.44
MathPred(FT) 66.97 7.62 77.72 6.38

#-samples 12,364 1,511 12,382 826

Table 4: Top-1 accuracy of notation auto-
suggestion and consistency checks on the easy set and
challenge set. Note that the total sum of samples are
different due to the different window sliding.

gold notation token with a random token of the
same notation type (see Table 1) of the gold token.
For example, the letter token n is replaced by other
letter tokens like p, and the symbol token α is
replaced by other symbol tokens like β .

4.4 Notation Prediction Tasks

Table 2 shows the top-1, top-5 accuracy and MRR
scores of our method in comparison with other
BERT variations and other baselines. The results
show that the original BERT baselines are poor at
the prediction tasks. BERT that were fine-tuned
on our datasets (BERT(FT)) show relatively bet-
ter results. However, our method shows signifi-
cant improvements over all of the baseline models,
showing that MATHPREDICTOR is particularly op-
timized to learn notation-specific semantics from
text. Although the top-1 accuracy might not be
enough, the top-5 accuracy is promising when we
imagine that the application aids the writer, present-
ing possible notation candidates.

Modeling longer contexts (FullContext) de-
grades the performance on both tasks. We conjec-
ture that the model is confused by additional global
context that contains many other notations and/or



(a) Easy set

(b) Challenge set

Figure 3: Top-1 accuracy performance in notation
auto-suggestion on notation types. (Number) denotes
the total number of notation tokens in the test set.
“Ours” refers to MATHPREDICTOR.

current averaging method barely distinguish them.
In Appendix D we provide ablation studies of

model performances on different context sizes.

4.5 Assessing the Role of Local Occurrences

In this section, we ascertain whether MATHPRE-
DICTOR predicts notation tokens based on seeing
them in the surrounding context, or if it is learning
conventions of notation from other papers in the
training set (such as learning that α is conventional
for learning rate). To measure this effect, we split
the test samples in the two notation prediction tasks
into two sets: If the notation token is present in the
context sentences, we place it into Easy set. If not,
we place it into Challenge set. Table 3 shows an
example of each type.

Table 4 shows the performance on the easy and
challenge sets. Although the original BERT shows
poor performance on the easy set, the fine-tuned
BERT seems to learn notations through masked
language modeling. On the other hand, MATHPRE-
DICTOR makes further improvements, by 14.6%
for the auto-suggestion task and 17.5% for the con-
sistency task.

However, the performance in the challenge set
(7.6% for auto-suggestion and 6.4% for consis-
tency) is much lower than the easy set (67% and

(a) Easy set

(b) Challenge set

Figure 4: Top-1 accuracy performance in consistency
check on notation types. (Number) denotes the total
number of notation tokens in the test set.

78%, respectively). This indicates that learning the
domain-conventional patterns of notation usages is
still relatively challenging compared to memoriz-
ing notations from given context.

4.6 Comparison of Notation Types

The next research question is which mathemati-
cal notation types (Table 1) are most successfully
predicted. Figure 3 shows notation suggestion per-
formance over different types of notations. Results
for the other prediction task, notation consistency,
have similar behavior and appear in Figure 4. Inter-
estingly, all of the models have difficulty predicting
LaTeX macros.

BERT cannot predict any of the operators or sym-
bols in the challenge set. The fine-tuned BERT also
struggles to learn the other forms of notation. On
the other hand, MATHPREDICTOR predicts unseen
notation better, achieving 6.2% for letters, 9.7% for
numbers, 12.9% for symbols and operators in the
challenge set. However, MATHPREDICTOR still
fails to predict LaTeX macros, meaning that these
patterns are difficult to learn. For example, the
model needs to learn when authors use \mathbf for
their stylistic choices.



Suggestion Consistency

Notation Sent. Notation Sent.

BERT 12.05 6.44 18.64 10.80
BERT(FT) 37.87 28.23 45.41 33.72
SciBERT(FT) 40.57 30.70 50.80 40.04
MathPred(FT) 45.11 37.11 57.20 48.56

#-samples 5,672 2,888 4,711 2,769

Table 5: The comparison of notation-level and
sentence-level top-1 accuracy in both tasks. The to-
tal number of tokens can be different because of pre-
defined vocabularies in tokenizer.

Multi-tokens in notation
..Thus, the procedure is worth
trying in this range of [MASK]
[MASK][MASK][MASK][MASK][MASK][MASK][MASK]..

Gold: \hat { p } _ { com ##m } ; p̂comm

BERT: $ $ $ $ $ $ $ $
BERT(FT): \hat { 1 } , , $ $ }
Ours: \hat { p } _ { com ##m }

Multi-notations in sentence
..that is they earn [MASK][MASK][MASK]/hour for class-
1 VMs, [MASK][MASK][MASK]/hour for class-2VMs,
and [MASK][MASK][MASK]/hour for class-3 VMs..

Gold: 0 . 08 / 0 . 16 / 0 . 32

BERT: $ $ $ / $ $ $ / $ $ =
BERT(FT): 0 . 08 / 0 . 10 / 0 . 08
Ours: 0 . 08 / 0 = 16 / 0 . 32

Table 6: Example of notation-level and sentence-level
predictions. Correctly predicted tokens are shown in
bold blue, and incorrectly predicted tokens are in red.
our method shows better performance than the base-
lines, but fails to predict the notation tokens perfectly.

4.7 Notation- and Sentence- level predictions

Although our method shows competitive perfor-
mance on token-level predictions, a more realistic
assessment checks is performance over multiple
tokens in a sequence of notation tokens and over
multiple notations in the full sentence.

The only difference between this evaluation and
the token-level experiment in §4.4 is that the model
prediction is marked as correct only if every token
in the individual notation or in the full sentence is
correct.

Table 5 summarizes the results, and shows that
success at multi-token notation-level and sentence-
level is more difficult than at the token-level. For
example, in Table 6 (top), the fine-tuned BERT
is partially correct at notation-level but the model
shows incorrect results in notation- and sentence-
level evaluations. MATHPREDICTOR shows bet-

ter performance, but it also fails to predict multi-
notations in the sentence (see Table 6 (bottom)).

Interestingly, when comparing token-level ac-
curacy (Table 2) and notation/sentence-level accu-
racy (Table 5), BERT shows better performance
at notation/sentence-level prediction than token-
level prediction, whereas the other models show
the converse. This implies that the original BERT
has more structural consistency. Therefore, this
notation/sentence-level evaluation is important to
test the models’ ability to predict the structure of
mathematical notations.

4.8 Qualitative Results: Full Paper

To simulate a real-world scenario, we run our
model over sentences of a full paper. The model
sequentially predicts notation tokens for each target
sentence by looking at its local context, concatenat-
ing the prediction results to the next prediction, and
repeating the process until the last sentence. From
the test set, we select a paper which has many sim-
ple notation tokens to see the potential use case of
MATHPREDICTOR.

Table 7 shows a paragraph extracted from the
paper with prediction results by models. Similar to
the previous empirical results, the original BERT
shows very poor performance. The fine-tuned
BERT and MATHPREDICTOR perform well, and
interestingly, our model shows more consistency
in using notation. In more detail, the fine-tuned
BERT’s predictions on the sentence “the length can
be written as N, where N is the probability of m
symbol” shows that it correctly predicts N based
on the previous sentence, but it does not predict the
values for m or Y correctly.

On the other hand, MATHPREDICTOR correctly
predicts the relationship between m and Y . This
example suggests that our method can learn some
connections between symbol usages–possibly from
the previous/surrounding sentences or other papers.
However, in the early sentences that define N and
m (i.e., “Suppose, the length of input data is ...”),
none of the models succeed at predicting the correct
notation for their first use, most likely because N
and m never appear in the previous context.

This example also shows what appears to be
a case of a model learning a conventional use of
notation. Even the original BERT model is able
to predict the correct usage of N after the context
defines the length as N several times.

Analysis on the performance according to paper



PaperID in S2ORC dataset: 16122894, ArXivID: 1408.3083, Section: Computational Complexity of Binarization Scheme

BERT: .. Suppose, the length of input data is , (Gold: N), , (Gold: m) is the number of source symbols, and

, (Gold: Y ) is the source. For the first symbol, the length of the binary string would be M (Gold: N).
The length of binary string for the second symbol would be the length of all the symbols, except the first
symbol ( see Table 1 ). Likewise, the length of n (Gold: N) binary string would be the length all symbols
yet to be binarized. Mathematically, the length can be written as N , where m is the probability of m
(Gold: Y ) symbol. The total number of binary assignment would be N ...

BERT(FT): ... Suppose, the length of input data is m (Gold: N), m is the number of source symbols, and n (Gold:
Y ) is the source. For the first symbol, the length of the binary string would be N . The length of
binary string for the second symbol would be the length of all the symbols, except the first symbol ( see
Table 1 ). Likewise, the length of N binary string would be the length all symbols yet to be binarized.
Mathematically, the length can be written as N , where N (Gold: m) is the probability of m (Gold: Y )
symbol. The total number of binary assignment would be N ...

MathPred(FT): ... Suppose, the length of input data is m (Gold: N), n (Gold: m) is the number of source symbols,
and m (Gold: Y ) is the source. For the first symbol, the length of the binary string would be N . The
length of binary string for the second symbol would be the length of all the symbols, except the first
symbol ( see Table 1 ). Likewise, the length of N binary string would be the length all symbols yet
to be binarized. Mathematically, the length can be written as N , where m is the probability of Y
symbol. The total number of binary assignment would be N ...

Table 7: Example of paper-level predictions by MATHPREDICTOR and other baselines. We sequentially auto-
suggest notations (left-only context) and concatenate the results. The notation tokens with gray background are
the target. Blue colored notation tokens mean correct predictions and red colored notation tokens mean incorrect
predictions. The gold labels (tokens) for the incorrect predictions are shown in parentheses.

domains, an example of mathematical operations
are presented in Appendix E and F.

5 Discussion

MATHPREDICTOR as an application. Our pro-
posed method showed reasonable performance in
top-5 accuracy (71.3% and 80.0% for each task),
which is strong for a novel task, but most likely not
good enough for a real-world application.

However, when we sub-sample 10 times more
than the main experiment, the performance on the
tasks is improved on the same test set by +10%
accuracy: 70.9% for top-1 accuracy and 81.6% for
top-5 accuracy on auto-suggestion and 83.5% for
top-1 accuracy and 89.0% for top-5 accuracy on
consistency checks. These results are promising for
MATHPREDICTOR to be utilized as an application.
The results suggest that current models memo-
rize the meanings rather than generalize over
them. Although we showed the possibility of mod-
eling mathematical notations, most of the results
indicates that the models are not able to predict
tokens which have not been presented before (in
Table 4). Predicting notation is a challenging prob-
lem, and relies on common patterns of notation
usage across papers.
Guidance for future work: One way to enhance

MATHPREDICTOR is to utilize the structure of no-
tation. We attempted to encode the structure using
token permutation (§3.3) but the method was not
expressive enough. Future work could combine
MATHPREDICTOR with direct modeling of mathe-
mathical notation using tree structures (Rabe et al.,
2020). Sophisticated model structure to encode
global context could bring further improvement.

6 Conclusion

In this paper, we propose two novel notation predic-
tion tasks to evaluate mathematical notation seman-
tics in academic paper writing. We then present a
fine-tuned BERT particularly optimized on these
tasks, which outperforms other baselines. Our anal-
ysis shows that the model can be thought of as a
way to encode knowledge about the usages of math-
ematical notations in specific domains, although it
does not seem to generalize beyond the notation
within the text it is exposed to. We see this as a
first step toward more powerful analysis tools that
can one day act as a method to help authors of
mathematical texts select and refine their notation.
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A Details on Manual Work

Specifically, we first filtered the notations using
regex. When finding Numbers, we use ’([̂0̇-9,̇ ]+?
[a-zA-Z]*$)’ to find the numbers like “1cm”, “8K”,
etc. However, LaTeX uses backslashes when de-
scribing both operations (e.g. “\times”) and sym-
bols (e.g. “\alpha”). So we manually check whether
their types are correctly classified. Finally, Letters
are found by a regex ’(̂?!\)[a-zA-Z,]+?’. The rest
are classified as math operations and symbols, after
another manual investigation. Since the number of
unique notation tokens is relatively small in our test
set (e.g.,Letter:169, Number:56, OpSymbol:108,
LatexMacro:34), this manual procedure is highly
accurate.

B Effect of Masking Length Constraint

Figure 5: The performance according to the change in
the number of mask constraint.

During the preprocessing step, we skipped sen-
tences which had more than 10 tokens of mathemat-
ical notation. Here, we change the masking length
constraint from 1 to 100 and report the results in
Figure 5. These results show that increasing the
number of masks to more than 10 largely degrades
the performance.

C Model Training Details

Baseline training details. In the original
BERT’s masked language model training, it first
selects a part of tokens (in default 15%). Among
them, 80% tokens are masked, 10% tokens are
randomly changed to other tokens, and 10%
remains original. Only for the masked tokens, the
model calculates the loss between the predicted
tokens and the gold tokens.

The training batch size is 6, using adam with β1
of 0.9, β2 of 0.999, and ε of 1e-8. The number

of maximum training epoch is 20 but the training
stops about 15 epochs by early-stopping. We stop
the training if the validation accuracy does not in-
crease in 3 epochs.

Hyperparameters. We use the default hyperpa-
rameters of hugging face (Wolf et al., 2020) except
for learning rate. It uses gelu function as activa-
tion functions, and dropout with 0.1% probabil-
ity. Layer normalization is also applied with ε

of 1e-12. The hidden size is 768 with attention
heads of 12, and the number of hidden layers are
12. all the weights are initialized by 0 mean and
0.02 standard deviation. The maximum input token
length, which is the same with position embedding
length is 512. The token vocabulary size depends
on the predefined vocab but 28,996 in BERT cased
version, 31,116 in SciBERT cased, and 50,265 in
RoBERTa. Note that we added custom vocabulary
such as LaTeX macros.

Computing resources. We train the data using
2 Titan Xp (12G) GPUs. In our dataset, it takes
2 hours per epochs with 6 batch size. Although
we collected larger version of dataset, training over
2M sentences (10,000 papers X 234 sentences per
paper) takes too much time (more than 24 hours
per 1 epoch using our computing), so we mainly
report experiment results with the smaller version.

D Effect of Context Size

Depending on the local context size, MATHPRE-
DICTOR’s performance varies. We performed an
ablation study on performance changes according
to the number of local context sentences in training
and testing. Table 8 and Table 9 show the notation
auto-suggestion performance and the consistency
check performance, respectively. We observe that
using the same size of local context for both train-
ing and testing shows the best result. Also for nota-
tion prediction task, using seven left sentences for
both training (L7) and testing (L7) shows the best
performance even better than using the maximum
token length of BERT (T512). For notation con-
sistency task, there was some variation but using
three left and three right sentences for both train-
ing (L3R3) and testing (L3R3) gives the comparable
performance. We use the best setting (L7−L7 for
suggestion and L3R3−L3R3 for consistency check)
in the aforementioned experiments.



#Train.

#Context Sentence
L1 L3 L5 L7 LMAX=T512

L1 50.32 50.53 48.84 46.28 39.18
L3 47.93 58.23 61.12 56.85 53.96
L5 48.61 58.35 61.90 59.53 57.98
L7 48.82 60.51 62.64 60.54 60.67
LMAX 47.56 55.78 57.08 59.53 63.07

Table 8: Top-1 accuracy on the notation predic-
tion. Ln denotes left n sentence(s) and T512 denotes
left 512 tokens, which means the maximum size of
BERT. We report various training (encoding) and eval-
uation (decoding) settings that fine-tunes our model us-
ing {L1,L3,L5,L7,T512} and predicts the symbols with
{L1,L3,L5,L7,T512} context.

#Train.

#Context Sentence
L1R1 L2R2 L3R3

L1R1 66.65 70.35 69.10
L2R2 64.86 70.43 72.77
L3R3 66.31 72.33 73.54

Table 9: Top-1 accuracy on the notation consistency
task. LnRn denotes left n and right n sentence(s).
We report various training (encoding) and evalua-
tion (decoding) settings that fine-tunes our model us-
ing {L1R1,L2R2,L3R3} and predicts the symbols with
{L1R1,L2R2,L3R3} context.

E Performance by Domain

Table 10 shows the performance according to pa-
per domains. Among the test data, we select four
domains according to the number of data: Com-
puter Science (CS), Mathematics (Math), Physics,
and Statistics (Stat). The result shows that Physics
shows the best performance and Statistics are the
worst, while the others are similar performance to
overall performance. It might be the use of nota-
tions in Physics are relatively short and simple with
strict notation rules. Meanwhile, in Statistics there
are a series of numbers, which is hard to predict by
our method, as seen in the previous examples.

F Semantics behind Mathematical
Operations

.
We also investigate whether the models can pre-

dict notations for mathematical operations. We first
select examples from the challenge set to exclude
simple memorable symbol patterns from context,
and extract test samples that contain mathematical
operations. Then we intentionally mask individual
tokens and check whether the model can success-
fully predict them from the rest.

Suggestion Consistency
Top1 Top5 MRR. Top1 Top5 MRR.

CS 60.34 71.09 .655 73.98 80.41 .772
Math. 61.93 73.53 .673 70.23 77.28 .737
Physics80.30 84.85 .826 83.33 84.85 .838
Stat. 52.71 65.12 .584 65.80 74.46 .700

Table 10: The comparison of domain-level top-1 accu-
racies and mean reciprocal rank scores in both tasks.

Table 11 shows one of the examples. We mask
each token in the symbol notation ‘4 * 4 = 16’ and
compare models’ outputs. our method shows that
it fails to (auto-)suggest but succeeds to verify the
numbers or operators. We believe that the model
can be much improved by training our model on
much larger dataset like entire S2ORC dataset.

G Additional Examples



· · · Within 5% visual Complete difference, we subgroup them based on 4 conditions of SI difference : SIdi f f >= 10 ; 1 <=
SIdi f f < 10 ; −10 < SIdi f f <= −1 ; SIdi f f <= −10. Within each SI difference condition, we again subgroup each of them
into 4 conditions of PSI difference: PSIdi f f >= 10 ; 1 <= PSIdi f f < 10 ; −10 < PSIdi f f <=−1 ; PSIdi f f <=−10. In total,
we have 4∗4 = 16 conditions for our experiment. The reason we selected our video pairs based on SI and PSI for Phase-1
experiment is that we believed these are key QoE metrics to best express user perception. · · · .

Masking [MASK]∗4 = 16 4[MASK]4 = 16 4∗[MASK]= 16 4∗4[MASK]16 4∗4 = [MASK]

Su
gg

es
t. BERT +, conditions, - +, ‘.’, / =, $, 1 *, +, / 4, 5, 6

BERT(FT) 2, 4, 10 ψ , /, + :, *, ψ *, /, ψ 5, 4, 10
MathPredictor {, \, v {, p, v {, p, 2 =, _ , $ 5, $, 6

C
on

si
st

. BERT 1, 2, + +, -, / <, +, = *, +, / 10, 20, 11
BERT(FT) 2, 4, 1 ‘,’, =, + *, t, 10 =, \mathclose, + 10, 5, 4
MathPredictor N, 10, K =, ‘.’, ˆ 4, 10, 2 =, ˆ , _ 10, 16, 4

Table 11: Examples of top-3 predictions for mathematical operators from the challenge set. We partially mask
the notation tokens 4∗4 = 16 by masking each token. The blue means correct notation predictions, matching the
gold ones.

.. Note that in this case n+4 . As n+4 , we get that n+3 . Essentially the same calculation works if n+4 is close,

from below, to a power of 2, as then n+3 is not much larger than n .

.. The global optimality condition holds for communities c and c′ when no other pair of communities could be merged
so as to increase the modularity more than would merging c and c′. The local optimality condition weakens the global

condition, holding when no pair of communities, one of which is either c or c preliminary (Gold: ′), could be merged

to increase the modularity more than would merging c and c preliminary . (Gold: ′)
.. Thus, under appropriate technical conditions, the chain has a unique stationary distribution and the sequence converges
in distribution to this invariant distribution. Let Watts (Gold: ϒ) n denote a right - invariant distance on the group Kn .

The main benefit of the filter is with respect to its convergence properties. Indeed, under very mild conditions, the
covariance matrix L (Gold: P) n and the filter’s gain L (Gold: K) n are proved to converge to fixed values CITATION.

As C = G is compact ( as a closed subset of a compact ) the open cover K = {x ∈ G,h(x,0) = h(Id ,0)} has a finite
subcover and there exists an integer K such that G, i. e. C = G .

The set of all strategies is denoted by N ∈ N∗ The set B denoting {0,1}, let f : BN −→ BN be a function and S ∈ S be a
strategy. The so - called chaotic iterations are defined by B and lit (Gold: {) 0,1}

In addition, bd(X ,Y )c is a measure of the differences between strategies n and E, Ě. More precisely, this floating part is
less than bd(X ,Y )c if and only if the first n terms of the two strategies are equal. Moreover, if the bd(X ,Y ) ) (Gold: c)
digit is nonzero, then the n terms of the two strategies are different.

i. e., the number of distinct encoded rows stored across the
{

t :∈ {CK : |K ∩Q\{k}| , 0}, t ∈Rk
}

servers is exactly
Q\{k}. As a result, the communication is finished with the load sq = smin for this case. Case 2 : sq = (Gold: <)

smin .

Table 12: Example of predictions by our model in test data. The notation tokens with gray background are
the target. Blue colored notation tokens mean correct predictions and red colored notation tokens mean incorrect
predictions.


